На отрезке \(\displaystyle [0;\, \pi]\) заданы синие точки, лежащие на графике функции \(\displaystyle y=\cos(x){\small .}\)
Используя табличные значения \(\displaystyle \cos(x){ \small ,}\) постройте \(\displaystyle 8\) точек на промежутке \(\displaystyle (\pi;\, 2\pi]\) так, чтобы получился график функции \(\displaystyle y=\cos(x)\) на отрезке \(\displaystyle [0;\, 2\pi]{\small .}\)
\(\displaystyle \cos \left( \frac{7\pi}{6} \right)=\cos \left(\pi+ \frac{\pi}{6} \right)=-\cos \left( \frac{\pi}{6} \right)=-\frac{\sqrt{3}}{2}{\small ,}\)
\(\displaystyle \cos \left( \frac{5\pi}{4} \right)=\cos \left(\pi+ \frac{\pi}{4} \right)=-\cos \left( \frac{\pi}{4} \right)=-\frac{\sqrt{2}}{2}{\small ,}\)
\(\displaystyle \cos \left( \frac{4\pi}{3} \right)=\cos \left(\pi+ \frac{\pi}{3} \right)=-\cos \left( \frac{\pi}{3} \right)=-\frac{1}{2}{\small ,}\)
\(\displaystyle \cos \left( \frac{3\pi}{2} \right)=\cos \left(\pi+ \frac{\pi}{2} \right)=-\cos \left( \frac{\pi}{2} \right)=0{\small ,}\)
\(\displaystyle \cos \left( \frac{5\pi}{3} \right)=\cos \left(\pi+ \frac{2\pi}{3} \right)=-\cos \left( \frac{2\pi}{3} \right)=\frac{1}{2}{\small ,}\)
\(\displaystyle \cos \left( \frac{7\pi}{4} \right)=\cos \left(\pi+ \frac{3\pi}{4} \right)=-\cos \left( \frac{3\pi}{4} \right)=\frac{\sqrt{2}}{2}{\small ,}\)
\(\displaystyle \cos \left( \frac{11\pi}{6} \right)=\cos \left(\pi+ \frac{5\pi}{6} \right)=-\cos \left( \frac{5\pi}{6} \right)=\frac{\sqrt{3}}{2}{\small ,}\)
\(\displaystyle \cos \left( 2\pi \right)=1{\small .}\)