Вставьте правильные символы:
\(\displaystyle a-(b+c)=(a\)\(\displaystyle )-b\)
Чтобы решить задачу, нам необходимо найти неизвестный параметр и определить пропущенный знак.
В ходе решения задачи происходит перестановка параметров в соответствии с законами сложения и вычитания. Изначально у нас было три параметра \(\displaystyle a\), \(\displaystyle b\) и \(\displaystyle c\), а после их перестановки остались известными два параметра – \(\displaystyle a\) и \(\displaystyle b\). Значит, неизвестный параметр – это \(\displaystyle c\):
\(\displaystyle (a\,\,?\,\,?)-b=(a\,\,?\,\,{\bf c})-b\)
Теперь определим пропущенный знак, используя законы сложения и вычитания. Применим их к первоначальному выражению \(\displaystyle a-(b+c)\) таким образом, чтобы параметр \(\displaystyle c\) переместился в середину выражения.
Применим переместительный закон, а потом изменим порядок скобок.
Переместительный закон
Для любых чисел \(\displaystyle x\) и \(\displaystyle y\) верно
\(\displaystyle x+y=y+x\).
\(\displaystyle a-({\bf b}+{\bf c})=\) (применим переместительный закон к выражению в скобках) \(\displaystyle =a-({\bf c}+{\bf b}).\)
Для любых чисел \(\displaystyle x,\, y\) и \(\displaystyle z\) верно
\(\displaystyle x-(y+z)=x-y-z\).
Тогда
\(\displaystyle a-{\large(}c+b{\large)}=a-c-b={\large(}a-c{\large)}-b.\)
Ответ: \(\displaystyle a-(b+c)=(a \color{red}{\bf - c})-b.\)