Skip to main content

Теория: 02 Производная и правила дифференцирования

Задание

Найдите производную:

\(\displaystyle \left(\frac{5x^4-5x+3}{\ln(x)}\right)^{\prime}=\)
\frac{(20x^3-5)\cdot\ln(x)-(5x^4-5x+3)\cdot\frac{1}{x}}{(\ln(x))^2}

При вводе ответа аргумент логарифма запишите в скобках.

Решение

Воспользуемся правилом дифференцирования частного:

Правило

Производная частного

\(\displaystyle\left(\frac{\color{green}{f(x)}}{\color{blue}{g(x)}}\right)^{\prime}=\frac{\left(\color{green}{f(x)}\right)^{\prime}\cdot \color{blue}{g(x)} - \color{green}{f(x)}\cdot\left(\color{blue}{g(x)}\right)^{\prime}}{\left(\color{blue}{g(x)}\right)^2}{\small.}\)

Получаем:

\(\displaystyle\left(\frac{\color{green}{5x^4-5x+3}}{\color{blue}{\ln (x)}}\right)^{\prime}=\frac{\left(\color{green}{5x^4-5x+3}\right)^{\prime}\left(\color{blue}{\ln (x)}\right)-\left(\color{green}{5x^4-5x+3}\right)\left(\color{blue}{\ln (x)}\right)^{\prime}}{\left(\color{blue}{\ln (x)}\right)^2}{\small .}\)

Вычислим производные:

  • \(\displaystyle \begin{aligned} \color{green}{\left(5x^4-5x+3\right)^{\prime}}= \color{green}{\left(5x^4\right)^{\prime}-(5x)^{\prime}+(3)^{\prime}}= \color{green}{\left(20x^3\right)-(5)+(0)} =\color{green}{20x^3-5} {\small,} \end{aligned}\)
  • \(\displaystyle \color{blue}{\left(\ln (x)\right)^{\prime}}= \color{blue}{\frac{1}{x}} {\small.} \)

Подставляя, получаем:

\(\displaystyle \begin{aligned}\frac{\color{green}{\left(5x^4-5x+3\right)^{\prime}}\left({\ln (x)}\right)-\left({5x^4-5x+3}\right)\color{blue}{\left(\ln (x)\right)^{\prime}}}{\left({\ln (x)}\right)^2}=\\[10px]=\frac{\color{green}{\left(20x^3-5\right)}\cdot{\ln (x)}-\left({5x^4-5x+3}\right)\cdot\color{blue}{\frac{1}{x}}}{\left({\ln (x)}\right)^2}{\small.}\end{aligned}\)


Таким образом, получаем:

\(\displaystyle \begin{aligned}\left(\frac{{5x^4-5x+3}}{{\ln (x)}}\right)^{\prime}=\frac{\left({5x^4-5x+3}\right)^{\prime}\left({\ln (x)}\right)-\left({5x^4-5x+3}\right)\left({\ln (x)}\right)^{\prime}}{\left({\ln (x)}\right)^2}=\\[10px]=\frac{{\left(20x^3-5\right)}\cdot{\ln (x)}-\left({5x^4-5x+3}\right){\cdot \frac{1}{x}}}{\left({\ln (x)}\right)^2}{\small.}\end{aligned}\)


Ответ: \(\displaystyle \frac{{\left(20x^3-5\right)}\cdot{\ln (x)}-\left({5x^4-5x+3}\right){\cdot \frac{1}{x}}}{\left({\ln (x)}\right)^2}{\small.}\)