Найдите частное при делении многочлена на одночлен:
Распишем дробь (делим числитель почленно на знаменатель):
\(\displaystyle \frac{28x^{\,2}y^{\,10}z^{\,4}-17x^{\,3}y^{\,2}z^{\,9}-11x^{\,3}yz^{\,15}}{x^{\,2}yz^{\,3}}=\frac{28x^{\,2}y^{\,10}z^{\,4}}{x^{\,2}yz^{\,3}}-\frac{17x^{\,3}y^{\,2}z^{\,9}}{x^{\,2}yz^{\,3}}-\frac{11x^{\,3}yz^{\,15}}{x^{\,2}yz^{\,3}} {\small .}\)
Вынесем числовые коэффициенты у каждого члена:
\(\displaystyle \frac{28x^{\,2}y^{\,10}z^{\,4}}{x^{\,2}yz^{\,3}}-\frac{17x^{\,3}y^{\,2}z^{\,9}}{x^{\,2}yz^{\,3}}-\frac{11x^{\,3}yz^{\,15}}{x^{\,2}yz^{\,3}} =28\frac{x^{\,2}y^{\,10}z^{\,4}}{x^{\,2}yz^{\,3}}-17\frac{x^{\,3}y^{\,2}z^{\,9}}{x^{\,2}yz^{\,3}}-11\frac{x^{\,3}yz^{\,15}}{x^{\,2}yz^{\,3}}{\small .}\)
Далее используем формулу частного степеней для каждой дроби (делим на \(\displaystyle x^{\,2}yz^{\,3}\)):
\(\displaystyle \begin{array}{l}28\cfrac{x^{\,2}y^{\,10}z^{\,4}}{x^{\,2}yz^{\,3}}-17\cfrac{x^{\,3}y^{\,2}z^{\,9}}{x^{\,2}yz^{\,3}}-11\cfrac{x^{\,3}yz^{\,15}}{x^{\,2}yz^{\,3}}=\\[15px]\kern{3em} =28x^{\,2-2}y^{\,10-1}z^{\,4-3}-17x^{\,3-2}y^{\,2-1}z^{\,9-3}-11x^{\,3-2}y^{\,1-1}z^{\,15-3}=\\[10px]\kern{3em} =28x^{\,0}y^{\,9}z^{\,1}-17x^{\,1}y^{\,1}z^{\,6}-11x^{\,1}y^{\,0}z^{\,12}=28y^{\,9}z-17xyz^{\,6}-11xz^{\,12}{\small .}\end{array}\)
Ответ: \(\displaystyle 28y^{\,9}z-17xyz^{\,6}-11xz^{\,12}{\small .}\)