Skip to main content

Теория: Линейные уравнения и раскрытие скобок (рациональные коэффициенты) (* доп. раздел)

Задание

Решите линейное уравнение:

\(\displaystyle -10\left(0{,}3x-0{,}4\left(x-\frac{3}{7}\right)+0{,}6\right)-4\left(\frac{1}{3}x-1\right)-5x=0\)
 

\(\displaystyle x=\)
-\frac{39}{56}
Решение

Чтобы решить линейное уравнение

\(\displaystyle -10\left(0{,}3x-0{,}4\left(x-\frac{3}{7}\right)+0{,}6\right)-4\left(\frac{1}{3}x-1\right)-5x=0 {\small , }\)

нужно сначала полностью раскрыть все скобки, а затем решить полученное линейное уравнение.

1. Раскроем внутренние скобки:

\(\displaystyle -10\left(0{,}3x-\color{blue}{ 0{,}4}\left(x-\frac{3}{7}\right)+0{,}6\right)-4\left(\frac{1}{3}x-1\right)-5x=0{\small ; }\)

\(\displaystyle -10\left(0{,}3x-\left(\color{blue}{ 0{,}4}\cdot x-\color{blue}{ 0{,}4}\cdot \frac{3}{7}\right)+0{,}6\right)-4\left(\frac{1}{3}x-1\right)-5x=0{\small ; }\)

\(\displaystyle -10\left(0{,}3x-\left(0{,}4x-\color{blue}{ \frac{ 4}{ 10}}\cdot \frac{3}{7}\right)+0{,}6\right)-4\left(\frac{1}{3}x-1\right)-5x=0{\small ; }\)

\(\displaystyle -10\left(0{,}3x-\left(0{,}4x-\frac{6}{35}\right)+0{,}6\right)-4\left(\frac{1}{3}x-1\right)-5x=0{\small ; }\)

\(\displaystyle -10\left(0{,}3x-0{,}4x+\frac{6}{35}+0{,}6\right)-4\left(\frac{1}{3}x-1\right)-5x=0{\small . }\)

Упростим полученное линейное уравнение, приведя подобные члены в скобках:

\(\displaystyle -10\left(\color{blue}{ 0{,}3x}-\color{blue}{ 0{,}4x}+\color{green}{ \frac{6}{35}}+\color{green}{ 0{,}6}\right)-4\left(\frac{1}{3}x-1\right)-5x=0{\small ; }\)

\(\displaystyle -10\left(\color{blue}{ -0{,}1x}+\color{green}{ \frac{6}{35}}+\color{green}{ \frac{ 6}{ 10}}\right)-4\left(\frac{1}{3}x-1\right)-5x=0{\small ; }\)

\(\displaystyle -10\left(\color{blue}{ -0{,}1x}+\color{green}{ \frac{6}{35}}+\color{green}{ \frac{ 3}{ 5}}\right)-4\left(\frac{1}{3}x-1\right)-5x=0{\small ; }\)

\(\displaystyle -10\left(\color{blue}{ -0{,}1x}+\color{green}{ \frac{6}{35}}+\color{green}{ \frac{ 21}{ 35}}\right)-4\left(\frac{1}{3}x-1\right)-5x=0{\small ; }\)

\(\displaystyle -10\left(\color{blue}{ -0{,}1x}+\color{green}{ \frac{27}{35}}\right)-4\left(\frac{1}{3}x-1\right)-5x=0{\small . }\)

2. Снова раскроем скобки:

\(\displaystyle \color{blue}{ -10}\left(-0{,}1x+\frac{27}{35}\right)-\color{green}{ 4}\left(\frac{1}{3}x-1\right)-5x=0{\small ; }\)

\(\displaystyle (\color{blue}{ -10})\cdot (-0{,}1x\,)+(\color{blue}{ -10})\cdot \frac{27}{35}-\left(\color{green}{ 4}\cdot \frac{1}{3}x-\color{green}{ 4}\cdot 1\right)-5x=0{\small ; }\)

\(\displaystyle x-\frac{54}{7}-\left(\frac{4}{3}x-4\right)-5x=0{\small ; }\)

\(\displaystyle x-\frac{54}{7}-\frac{4}{3}x+4-5x=0{\small . }\)

3. Решим полученное линейное уравнение:

\(\displaystyle \color{blue}{ x}-\color{green}{ \frac{54}{7}}-\color{blue}{ \frac{4}{3}x}+\color{green}{ 4}-\color{blue}{ 5x}=0{\small ; }\)

\(\displaystyle \color{blue}{ x}-\color{blue}{ \frac{4}{3}x}-\color{blue}{ 5x}=\color{green}{ \frac{54}{7}}-\color{green}{ 4}{\small ; }\)

\(\displaystyle \left(1-\frac{4}{3}-5\right)\color{blue}{ x}=\color{green}{ \frac{54}{7}}-\color{green}{ 4}{\small ; }\)

\(\displaystyle \left(\frac{ 3}{ 3}-\frac{4}{3}-\frac{ 15}{ 3}\right)\color{blue}{ x}=\color{green}{ \frac{54}{7}}-\color{green}{ \frac{ 28}{ 7}}{\small ; }\)

\(\displaystyle -\frac{ 16}{ 3}\color{blue}{ x}=\color{green}{ \frac{26}{7}}{\small ; }\)

\(\displaystyle x=\frac{ 26}{ 7}:\left( -\frac{ 16}{ 3}\right)= -\frac{ 26}{ 7}\cdot \frac{ 3}{ 16}=-\frac{78}{112}=-\frac{ 39}{ 56}{\small . }\)


Ответ: \(\displaystyle -\frac{ 39}{ 56}{\small . }\)