Skip to main content

Теория: Смешанные операции с дробями

Задание

Найдите значение выражения (ответ запишите в виде дроби):

\(\displaystyle \frac{3}{7}: \left(0,4+2\frac{2}{3}\right)\cdot1,4\,=\)
 

 

Решение

Расставим порядок действий в выражении:

 2 1 3 
\(\displaystyle \frac{3}{7}\)\(\displaystyle :\)\(\displaystyle \big( 0,4\)\(\displaystyle +\)\(\displaystyle 2\frac{2}{3}\big)\)\(\displaystyle \cdot\)\(\displaystyle 1,4 \)

 

Первое действие: \(\displaystyle 0,4+2\frac{2}{3}\).

Представим десятичную дробь в виде обычной дроби:
 

\(\displaystyle 0,4=\frac{4}{10}=\frac{2}{5}\).


Представим смешанное число в виде неправильной дроби:


\(\displaystyle 2\frac{2}{3}=2+\frac{2}{3}=\frac{2\cdot 3+2}{3}=\frac{8}{3}\).


Сложим дроби:


\(\displaystyle 0,4+2\frac{2}{3}=\frac{2}{5}+ \frac{8}{3}=\frac{2\cdot {\bf 3}}{5\cdot{\bf 3}}+\frac{8\cdot {\bf 5}}{3\cdot {\bf 5}}=\frac{6}{15}+\frac{40}{15}=\frac{6+40}{15}=\frac{46}{15}\).


\(\displaystyle НОД(46,15)=1\) и, следовательно, полученная дробь несократима.


Второе действие: \(\displaystyle \frac{3}{7}:\frac{46}{15}\).

Поделим дроби:
 

\(\displaystyle \frac{3}{7}:\frac{46}{15}=\frac{3}{7}\cdot \frac{15}{46}=\frac{3\cdot 15}{7\cdot 46}=\frac{45}{322}.\)


Так как \(\displaystyle НОД(45,322)=1\), то полученная дробь несократима.


Третье действие: \(\displaystyle \frac{45}{322}\cdot 1,4\).

Представим десятичную дробь в виде обыкновенной дроби:
 

\(\displaystyle 1,4=\frac{14}{10}=\frac{7}{5}\).

Перемножим дроби:
 

\(\displaystyle \frac{45}{322}\cdot 1,4=\frac{45}{322}\cdot \frac{7}{5}=\frac{45\cdot 7}{322\cdot 5}=\frac{315}{1610}\).
 

Представим дробь \(\displaystyle \frac{315}{1610}\) в виде несократимой:
 

\(\displaystyle НОД(315,1610)=НОД(3^2\cdot 5\cdot 7, 2\cdot 5\cdot 7\cdot 23)=5\cdot 7=35\).
 

Следовательно, \(\displaystyle \frac{315}{1610}=\frac{315:35}{1610:35}=\frac{9}{46}\).


Ответ: \(\displaystyle \frac{9}{46}\).