Skip to main content

Теория: Смешанные операции с дробями

Задание

Найдите значение выражения (ответ запишите в виде дроби):

\(\displaystyle \left(2\frac{1}{2}\right)^3- 0,34\,=\)
 

 

Решение

Расставим порядок действий в выражении:

12 
\(\displaystyle \left(2\frac{1}{2}\right)^3\)\(\displaystyle -\)\(\displaystyle 0,34\)

 

Первое действие: возведение в степень \(\displaystyle \left(2\frac{1}{2}\right)^3\).

Представим смешанное число  в виде неправильной дроби:

 

\(\displaystyle 2\frac{1}{2}=2+\frac{1}{2}=\frac{2\cdot 2+1}{2}=\frac{5}{2}\).
 

Возведем в степень исходную дробь:
 

\(\displaystyle \left(2\frac{1}{2}\right)^3=\left(\frac{5}{2}\right)^3=\frac{5^3}{2^3}=\frac{125}{8}\).


Второе действие: \(\displaystyle \frac{125}{8}-0,34\).

Представим десятичную дробь в виде обыкновенной дроби:
 

\(\displaystyle 0,34=\frac{34}{100}=\frac{17}{50}\).
 

Наименьший общий знаменатель дробей \(\displaystyle \frac{125}{8} \) и \(\displaystyle \frac{17}{50}\) равен:
 

\(\displaystyle НОК(8,50)=200\).

Учитывая, что

\(\displaystyle 200=8\cdot {\bf 25}=50\cdot {\bf 4}\),

найдем разность дробей:
 

\(\displaystyle \frac{125}{8}-\frac{17}{50}=\frac{125\cdot {\bf 25}}{8\cdot {\bf 25}}-\frac{17\cdot {\bf 4}}{50\cdot {\bf 4}}=\frac{3125-68}{200}=\frac{3057}{200}\).
 

Ответ: \(\displaystyle \frac{3057}{200}\).