Skip to main content

Теория: Связь с угловым коэффициентом (короткая версия)

Задание

На рисунках изображены графики функций вида \(\displaystyle y=kx+b \small.\) Установите соответствие между графиками и знаками коэффициента \(\displaystyle k \small.\)
 

\(\displaystyle А\)\(\displaystyle Б\)\(\displaystyle В\)
Перетащите сюда правильный ответ Перетащите сюда правильный ответ Перетащите сюда правильный ответ
Решение

Даны три прямые, являющиеся графиками линейных функций.

Нужно установить соответствие между прямыми и знаками коэффициента \(\displaystyle k \small.\)


Определим для каждой прямой знак коэффициента \(\displaystyle k \small.\)

Рисунок \(\displaystyle А {\small : }\) \(\displaystyle k<0 {\small . }\)

По графику видим:

при увеличении значения \(\displaystyle x\) значение \(\displaystyle y\) уменьшается.

Поэтому данная функция убывает, а, значит, 

\(\displaystyle k<0 {\small . }\)

Рисунок \(\displaystyle Б {\small : }\) \(\displaystyle k>0 {\small . }\)

По графику видим:

при увеличении значения \(\displaystyle x\) значение \(\displaystyle y\) тоже увеличивается.

Поэтому данная функция возрастает, а, значит, 

\(\displaystyle k>0 {\small . }\)

Рисунок \(\displaystyle В {\small : }\) \(\displaystyle k=0 {\small . }\)

По графику видим:

при увеличении значения \(\displaystyle x\) значение \(\displaystyle y\) не изменяется.

Поэтому данная функция постоянна, а, значит, 

\(\displaystyle k=0 {\small . }\)

Запишем ответ:

\(\displaystyle А\)\(\displaystyle Б\)\(\displaystyle В\)
\(\displaystyle k<0 \)\(\displaystyle k>0 \)\(\displaystyle k=0 \)