Решите систему уравнений:
\(\displaystyle\begin{aligned}\begin{cases}\dfrac{1}{2x+3}+\dfrac{1}{3y+2}=\dfrac{13}{40}{\small,}\\ \\\dfrac{5}{2x+3}-\dfrac{16}{3y+2}=-1{\small.}\end{cases}\end{aligned}\)
\(\displaystyle x=\) \(\displaystyle ,\) \(\displaystyle y=\)\(\displaystyle .\)
Решим систему уравнений:
\(\displaystyle\begin{aligned}\begin{cases}\dfrac{1}{2x+3}+\dfrac{1}{3y+2}=\dfrac{13}{40}{\small,}\\ \\\dfrac{5}{2x+3}-\dfrac{16}{3y+2}=-1{\small.}\end{cases}\end{aligned}\)
- Введём обозначения:
\(\displaystyle \dfrac{1}{2x+3}=a{\small,}\) \(\displaystyle \dfrac{1}{3y+2}=b{\small.}\)
- Подставим в систему уравнений \(\displaystyle a\) и \(\displaystyle b\) вместо \(\displaystyle \dfrac{1}{2x+3}\) и \(\displaystyle \dfrac{1}{3y+2}{\small.}\) Получим систему:
\(\displaystyle\begin{aligned}\begin{cases}a+b=\dfrac{13}{40}{\small,}\\ \\5a-16b=-1{\small.}\\\end{cases}\\\end{aligned}\)
- Решим эту систему относительно \(\displaystyle a\) и \(\displaystyle b{\small:}\)
\(\displaystyle a=\frac{1}{5}{\small,}\) \(\displaystyle b=\frac{1}{8}{\small.}\)
- Найдём значения \(\displaystyle x\) и \(\displaystyle y{\small:}\)
\(\displaystyle x=1{\small,}\) \(\displaystyle y=2{\small.}\)
Ответ: \(\displaystyle x=1{\small;}\) \(\displaystyle y=2{\small.}\)